詞語(yǔ)解釋
“香農(nóng)公式”是指由美國(guó)著名的信息理論家、諾貝爾獎(jiǎng)獲得者約翰·香農(nóng)提出的一個(gè)公式,用來(lái)衡量信息量的大小。它是一個(gè)數(shù)學(xué)公式,用來(lái)表示一個(gè)事件的信息量,它可以用來(lái)衡量不同的信息源,以及它們的有效性。 香農(nóng)公式的表達(dá)式為:H(X)= -∑P(x)log2P(x),其中P(x)表示每個(gè)可能的結(jié)果的概率,H(X)表示X的信息量,單位是比特(bit)。 香農(nóng)公式的應(yīng)用在于通信技術(shù)中,它可以用來(lái)衡量信息的有效性,以及信息的傳輸效率。例如,在無(wú)線電通信中,我們可以使用香農(nóng)公式來(lái)衡量信號(hào)的強(qiáng)度,以及信號(hào)的噪聲比。在數(shù)據(jù)傳輸中,我們可以使用香農(nóng)公式來(lái)衡量信息的傳輸效率,以及信息的完整性。 此外,香農(nóng)公式還可以用來(lái)衡量信息的安全性,例如在加密技術(shù)中,我們可以使用香農(nóng)公式來(lái)衡量加密后信息的安全性。 總之,香農(nóng)公式是一個(gè)非常有用的數(shù)學(xué)公式,它可以用來(lái)衡量不同信息源的有效性,以及信息的傳輸效率、安全性等,在通信技術(shù)中有著重要的應(yīng)用。 香農(nóng)定理指出: 如果信息源的信息速率R小于或者等于信道容量C,那么,在理論上存在一種方法可使信息源的輸出能夠以任意小的差錯(cuò)概率通過(guò)信道傳輸。 該定理還指出:如果R>C,則沒(méi)有任何辦法傳遞這樣的信息,或者說(shuō)傳遞這樣的二進(jìn)制信息的差錯(cuò)率為1/2。 可以嚴(yán)格地證明;在被高斯白噪聲干擾的信道中,傳送的最大信息速率C由下述公式確定: C=B*log2(1+S/N) 該式通常稱為香農(nóng)公式。B是信道帶寬(赫),S是信號(hào)功率(瓦),N是噪聲功率(瓦)。 公式表明,信道帶寬限制了比特率的增加,信道容量還取決于系統(tǒng)信噪比以及編碼技術(shù)種類。
香農(nóng)定理指出: 如果信息源的信息速率R小于或者等于信道容量C,那么,在理論上存在一種方法可使信息源的輸出能夠以任意小的差錯(cuò)概率通過(guò)信道傳輸。 該定理還指出:如果R>C,則沒(méi)有任何辦法傳遞這樣的信息,或者說(shuō)傳遞這樣的二進(jìn)制信息的差錯(cuò)率為1/2。 可以嚴(yán)格地證明;在被高斯白噪聲干擾的信道中,傳送的最大信息速率C由下述公式確定: C=B*log2(1+S/N) 該式通常稱為香農(nóng)公式。B是信道帶寬(赫),S是信號(hào)功率(瓦),N是噪聲功率(瓦)。 公式表明,信道帶寬限制了比特率的增加,信道容量還取決于系統(tǒng)信噪比以及編碼技術(shù)種類。
抱歉,此頁(yè)面的內(nèi)容受版權(quán)保護(hù),復(fù)制需扣除次數(shù),次數(shù)不足時(shí)需付費(fèi)購(gòu)買。
如需下載請(qǐng)點(diǎn)擊:點(diǎn)擊此處下載
掃碼付費(fèi)即可復(fù)制
乒乓切換 | 序列碼 | 開關(guān)電源 | 光分路器 | 寬頻 | BRU | msce | 第三方 | 宏蜂窩 | 分組 | 卓望 | 重組 |
移動(dòng)通信網(wǎng) | 通信人才網(wǎng) | 更新日志 | 團(tuán)隊(duì)博客 | 免責(zé)聲明 | 關(guān)于詞典 | 幫助