詞語解釋
“變頻”是指在通信中,通信信號的頻率可以變化的技術(shù)。它可以把一個信號從一個頻率變換到另一個頻率,以達(dá)到抗干擾、增強(qiáng)信號強(qiáng)度等目的。 變頻技術(shù)的應(yīng)用非常廣泛,在通信中有著重要的作用。它可以用來抗干擾,可以在一個頻率上發(fā)射信號,然后在另一個頻率上接收信號,以此來抵消外界的干擾信號。此外,變頻技術(shù)還可以用來增強(qiáng)信號的強(qiáng)度,可以在一個頻率上發(fā)射信號,然后在另一個頻率上接收信號,以此來增強(qiáng)信號的強(qiáng)度。 變頻技術(shù)在無線電通信中也有重要的應(yīng)用。變頻技術(shù)可以用來抗干擾,可以在一個頻率上發(fā)射信號,然后在另一個頻率上接收信號,以此來抵消外界的干擾信號。此外,變頻技術(shù)還可以用來增強(qiáng)信號的強(qiáng)度,可以在一個頻率上發(fā)射信號,然后在另一個頻率上接收信號,以此來增強(qiáng)信號的強(qiáng)度。 變頻技術(shù)還可以用來提高信號的傳輸距離。在一個頻率上發(fā)射信號,然后在另一個頻率上接收信號,可以提高信號的傳輸距離,從而提高信號的傳輸效率。 變頻技術(shù)在通信中的應(yīng)用還有很多,比如可以用來提高信號的傳輸質(zhì)量,可以用來抵消外界的干擾信號,可以用來增強(qiáng)信號的強(qiáng)度,可以用來提高信號的傳輸距離等等?傊冾l技術(shù)在通信中有著重要的作用,是一種非常有用的技術(shù)。 通過改變交流電頻率的方式實現(xiàn)交流電控制的技術(shù)就叫變頻技術(shù) 變頻技術(shù)是應(yīng)交流電機(jī)無級調(diào)速的需要而誕生的。20世紀(jì)60年代后半期開始,電力電子器件從SCR(晶閘管)、GTO(門極可關(guān)斷晶閘管)、BJT(雙極型功率晶體管)、MOSFET(金屬氧化物場效應(yīng)管)、SIT(靜電感應(yīng)晶體管)、SITH(靜電感應(yīng)晶閘管)、MGT(MOS控制晶體管)、MCT(MOS控制品閘管)發(fā)展到今天的IGBT(絕緣柵雙極型晶體管)、HVIGBT(耐高壓絕緣柵雙極型晶閘管),器件的更新促使電力變換技術(shù)的不斷發(fā)展。20世紀(jì)70年代開始,脈寬調(diào)制變壓變頻(PWM—VVVF)調(diào)速研究引起了人們的高度重視。20世紀(jì)80年代,作為變頻技術(shù)核心的PWM模式優(yōu)化問題吸引著人們的濃厚興趣,并得出諸多優(yōu)化模式,其中以鞍形波PWM模式效果最佳。20世紀(jì)80年代后半期開始,美、日、德、英等發(fā)達(dá)國家的VVVF變頻器已投入市場并廣泛應(yīng)用。 VVVF變頻器的控制相對簡單,機(jī)械特性硬度也較好,能夠滿足一般傳動的平滑調(diào)速要求,已在產(chǎn)業(yè)的各個領(lǐng)域得到廣泛應(yīng)用。但是,這種控制方式在低頻時,由于輸出電壓較小,受定子電阻壓降的影響比較顯著,故造成輸出最大轉(zhuǎn)矩減小。另外,其機(jī)械特性終究沒有直流電動機(jī)硬,動態(tài)轉(zhuǎn)矩能力和靜態(tài)調(diào)速性能都還不盡如人意,因此人們又研究出矢量控制變頻調(diào)速。 矢量控制變頻調(diào)速的做法是:將異步電動機(jī)在三相坐標(biāo)系下的定子交流電流Ia、Ib、Ic、通過三相—二相變換,等效成兩相靜止坐標(biāo)系下的交流電流Ia1Ib1,再通過按轉(zhuǎn)子磁場定向旋轉(zhuǎn)變換,等效成同步旋轉(zhuǎn)坐標(biāo)系下的直流電流Im1、It1(Im1相當(dāng)于直流電動機(jī)的勵磁電流;It1相當(dāng)于與轉(zhuǎn)矩成正比的電樞電流),然后模仿直流電動機(jī)的控制方法,求得直流電動機(jī)的控制量,經(jīng)過相應(yīng)的坐標(biāo)反變換,實現(xiàn)對異步電動機(jī)的控制。 矢量控制方法的提出具有劃時代的意義。然而在實際應(yīng)用中,由于轉(zhuǎn)子磁鏈難以準(zhǔn)確觀測,系統(tǒng)特性受電動機(jī)參數(shù)的影響較大,且在等效直流電動機(jī)控制過程中所用矢量旋轉(zhuǎn)變換較復(fù)雜,使得實際的控制效果難以達(dá)到理想分析的結(jié)果。 1985年,德國魯爾大學(xué)的DePenbrock教授首次提出了直接轉(zhuǎn)矩控制變頻技術(shù)。該技術(shù)在很大程度上解決了上述矢量控制的不足,并以新穎的控制思想、簡潔明了的系統(tǒng)結(jié)構(gòu)、優(yōu)良的動靜態(tài)性能得到了迅速發(fā)展。目前,該技術(shù)已成功地應(yīng)用在電力機(jī)車牽引的大功率交流傳動上。 直接轉(zhuǎn)矩控制直接在定子坐標(biāo)系下分析交流電動機(jī)的數(shù)學(xué)模型,控制電動機(jī)的磁鏈和轉(zhuǎn)矩。它不需要將交流電動機(jī)化成等效直流電動機(jī),因而省去了矢量旋轉(zhuǎn)變換中的許多復(fù)雜計算;它不需要模仿直流電動機(jī)的控制,也不需要為解耦而簡化交流電動機(jī)的數(shù)學(xué)模型。 VVVF變頻、矢量控制變頻、直接轉(zhuǎn)矩控制變頻都是交—直—交變頻中的一種。其共同缺點是輸入功率因數(shù)低,諧波電流大,直流回路需要大的儲能電容,再生能量又不能反饋回電網(wǎng),即不能進(jìn)行四象限運(yùn)行。為此,矩陣式交—交變頻應(yīng)運(yùn)而生。由于矩陣式交—交變頻省去了中間直流環(huán)節(jié),從而省去了體積大、價格貴的電解電容。它能實現(xiàn)功率因數(shù)為l,輸入電流為正弦且能四象限運(yùn)行,系統(tǒng)的功率密度大。該技術(shù)目前雖尚未成熟,但仍吸引著眾多的學(xué)者深入研究。 變頻技術(shù)與家用電器 20世紀(jì)70年代,家用電器開始逐步變頻化,出現(xiàn)了電磁烹任器、變頻照明器具、變頻空調(diào)器、變頻微波爐、變頻電冰箱、IH(感應(yīng)加熱)飯堡、變頻洗衣機(jī)等。 20世紀(jì)90年代后半期,家用電器則依托變頻技術(shù),主要瞄準(zhǔn)高功能和省電。比如,要求具有高速高出力、控制性能好、小型輕量、大容量、高舒適感、長壽命、安全可靠、靜音、省電等優(yōu)點。 首先是電冰箱,由于它處于全天工作,采用變頻制冷后,壓縮機(jī)始終處在低速運(yùn)行狀態(tài),可以徹底消除因壓縮機(jī)起動引起的噪聲,節(jié)能效果更加明顯。 其次,空調(diào)器使用變頻后,擴(kuò)大了壓縮機(jī)的工作范圍,不需要壓縮機(jī)在斷續(xù)狀態(tài)下運(yùn)行就可實現(xiàn)冷、暖控制,達(dá)到降低電力消耗,消除由于溫度變動而引起的不適感。近年來,新式的空調(diào)器已采用無刷直流電動機(jī)實現(xiàn)變頻調(diào)速,其節(jié)能效果較交流異步電動機(jī)變頻又提高約10%—15%。為了進(jìn)一步提高裝置的效能,近年來,日本的空調(diào)器又逐步從單純的PWM控制改為PWM十PAM混合控制方式。即較低速時采用PWM控制,保持U/f為一定;當(dāng)轉(zhuǎn)速大于一定值時,將調(diào)制度固定在最大值附近,通過改變直流斬波器的導(dǎo)通占空LL,提高逆變器輸入直流電壓值,從而保持變頻器輸出電壓和轉(zhuǎn)速成比例,這一區(qū)域稱為PAM區(qū)。采用混合控制方式后,變頻器的輸入功率因數(shù)、電機(jī)效率、裝置綜合效率都比單獨PWA4控制時有較大幅度的提高。 近年來,新式的變頻冷藏庫不但耗電量減少、實現(xiàn)靜音化,而且利用高速運(yùn)行能實現(xiàn)大幅度時快速冷凍;在洗衣機(jī)方面,過去使用變頻實現(xiàn)可變速控制,提高洗凈性能,新流行的洗衣機(jī)除了節(jié)能和靜音化外,還在確保衣物柔和洗滌等方面推出新的控制內(nèi)容;電磁烹任器利用高頻感應(yīng)加熱使鍋子直接發(fā)熱,沒有燃?xì)夂碗娂訜岬臒霟岵糠,因此不但安全,還大幅度提高加熱效率,其工作頻率高于聽覺之上,從而消除了飯鍋振動引起的噪聲;IH電飯堡得到的火力比電加熱器更強(qiáng),而且利用變頻可以進(jìn)行火力微調(diào),只要合理設(shè)計加熱感應(yīng)線圈,可得到任意的加熱布局,炊飯性能上了一個檔次;變頻微波爐利用高頻電能給磁控管必要的升壓驅(qū)動,電源結(jié)構(gòu)小,爐內(nèi)空間更寬敞,新式微波爐能任意調(diào)節(jié)電力,并根據(jù)不同食品選擇最佳加熱方式,縮短時間,降低電耗;照明方面,熒光燈使用高頻照明,可提高發(fā)光效率,實現(xiàn)節(jié)能,無閃爍,易調(diào)光,頻率任意可調(diào),鎮(zhèn)流器小型輕量。 變頻技術(shù)正在給形形色色的家電帶來新的革命,并將給用戶帶來更大的福音。今后變頻技術(shù)還將隨著電力電子器件、新型電力變換拓?fù)潆娐贰V波及屏蔽技術(shù)的進(jìn)步而發(fā)展。家用太陽能發(fā)電系統(tǒng)還將給家電增添新的能源。 電力電子裝置帶來的危害及對策 電力電子裝置中的相控整流和不可控二極管整流使輸入電流波形發(fā)生嚴(yán)重畸變,不但大大降低了系統(tǒng)的功率因數(shù),還引起了嚴(yán)重的諧波污染。另外,硬件電路中電壓和電流的急劇變化,使得電力電子器件承受很大的電應(yīng)力,并給周圍的電氣設(shè)備及電波造成嚴(yán)重的電磁干擾(EMl),而且情況日趨嚴(yán)重。許多國家都已制定了限制諧波的國家標(biāo)準(zhǔn),國際電氣電子工程師協(xié)會(IEEE)、國際電工委員會(IEC)和國際大電網(wǎng)會議(CIGRE)紛紛推出了自己的諧波標(biāo)準(zhǔn)。我國政府也分別于1984年和1993年制定了限制諧波的有關(guān)規(guī)定。 1.諧波與電磁干擾的對策 (1)諧波抑制為了抑制電力電子裝置產(chǎn)生的諧波,一種方法是進(jìn)行諧波補(bǔ)償,即設(shè)置諧波補(bǔ)償裝置,使輸入電流成為正弦波。 傳統(tǒng)的諧波補(bǔ)償裝置是采用lC調(diào)諧濾波器,它既可補(bǔ)償諧波,又可補(bǔ)償無功功率。其缺點是,補(bǔ)償特性受電網(wǎng)阻抗和運(yùn)行狀態(tài)影響,易和系統(tǒng)發(fā)生并聯(lián)諧振,導(dǎo)致諧波放大,使LC濾波器過載甚至燒毀。此外,它只能補(bǔ)償固定頻率的諧波,效果也不夠理想。但這種補(bǔ)償裝置結(jié)構(gòu)簡單,目前仍被廣泛應(yīng)用。 電力電子器件普及應(yīng)用之后,運(yùn)用有源電力濾波器進(jìn)行諧波補(bǔ)償成為重要方向。其原理是,從補(bǔ)償對象中檢測出諧波電流,然后產(chǎn)生一個與該諧波電流大小相等極性相反的補(bǔ)償電流,從而使電網(wǎng)電流只含有基波分量。這種濾波器能對頻率和幅值都變化的諧波進(jìn)行跟蹤補(bǔ)償,且補(bǔ)償特性不受電網(wǎng)阻抗的影響。它已得到人們的重視,并將逐步推廣應(yīng)用。 另一種方法是改革變流器的工作機(jī)理,做到既抑制諧波,又提高功率因數(shù),這種變流器稱單位功率因數(shù)變流器。 大容量變流器減少諧波的主要方法是采用多重化技術(shù):將多個方波疊加以消除次數(shù)較低的諧波,從而得到接近正弦的階梯波。重數(shù)越多,波形越接近正弦,但電路結(jié)構(gòu)越復(fù)雜。 幾千瓦到幾百千瓦的高功率因數(shù)變流器主要采用PWM整流技術(shù)。它直接對整流橋上各電力電子器件進(jìn)行正弦PWM控制,使得輸入電流接近正弦波,其相位與電源相電壓相位相同。這樣,輸入電流中就只含與開關(guān)頻率有關(guān)的高次諧波,這些諧波次數(shù)高,容易濾除,同時也使功率因數(shù)接近1。采用PWM整流器作為AC/DC變換的 PWM逆變器,就是所謂的雙PWM變頻器。它具有輸入電壓、電流頻率固定,波形均為正弦,功率因數(shù)接近1,輸出電壓、電流頻率可變,電流波形也為正弦的特點。這種變頻器可實現(xiàn)四象限運(yùn)行,從而達(dá)到能量的雙向傳送。 小容量變流器為了實現(xiàn)低諧波和高功率因數(shù),一般采用二極管整流加PWM斬波,常稱之為功率因數(shù)校正(PEC)。典型的電路有升壓型、降壓型、升降壓型等。 (2)電磁干擾抑制解決EMI的措施是克服開關(guān)器件導(dǎo)通和關(guān)斷時出現(xiàn)過大的電流上升率di/dt和電壓上升率du/dt,目前比較引入注目的是零電流開關(guān)(ZCS)和零電壓開關(guān)(ZVS)電路。方法是: ①開關(guān)器件上串聯(lián)電感,這樣可抑制開關(guān)器件導(dǎo)通時的di/dt,使器件上不存在電壓、電流重疊區(qū),減少了開關(guān)損耗; ②開關(guān)器件上并聯(lián)電容,當(dāng)器件關(guān)斷后抑制du/dt上升,器件上不存在電壓、電流重疊區(qū),減少了開關(guān)損耗; ③器件上反并聯(lián)二極管,在二極管導(dǎo)通期間,開關(guān)器件呈零電壓、零電流狀態(tài),此時驅(qū)動器件導(dǎo)通或關(guān)斷能實現(xiàn)ZVS、ZCS動作。 目前較常用的軟開關(guān)技術(shù)有: ①部分諧振PWM。為了使效率盡量與硬開關(guān)時接近,必須防止器件電流有效值的增加。因此,在一個開關(guān)周期內(nèi),僅在器件開通和關(guān)斷時使電路諧振,稱之為部分諧振。 ②無損耗緩沖電路。串聯(lián)電感或并聯(lián)電容上的電能釋放時不經(jīng)過電阻或開關(guān)器件,稱無損耗緩沖電路,常不用反并聯(lián)二極管。 在電機(jī)控制中主開關(guān)器件多采用 IGBT,IGBT關(guān)斷時有尾部電流,對關(guān)斷損耗很有影響。因此,關(guān)斷時采用零電流時間長的ZCS更合適。 2、功率因數(shù)補(bǔ)償早期的方法是采用同步調(diào)相機(jī),它是專門用來產(chǎn)生無功功率的同步電機(jī),利用過勵磁和欠勵磁分別發(fā)出不同大小的容性或感性無功功率。然而,由于它是旋轉(zhuǎn)電機(jī),噪聲和損耗都較大,運(yùn)行維護(hù)也復(fù)雜,響應(yīng)速度慢,因此,在很多情況下已無法適應(yīng)快速無功功率補(bǔ)償?shù)囊蟆?BR> 另一種方法是采用飽和電抗器的靜止無功補(bǔ)償裝置。它具有靜止型和響應(yīng)速度快的優(yōu)點,但由于其鐵心需磁化到飽和狀態(tài),損耗和噪聲都很大,而且存在非線性電路的一些特殊問題,又不能分相調(diào)節(jié)以補(bǔ)償負(fù)載的不平衡,所以未能占據(jù)靜止無功補(bǔ)償裝置的主流。 隨著電力電子技術(shù)的不斷發(fā)展,使用SCR、GTO和IGBT等的靜止無功補(bǔ)償裝置得到了長足發(fā)展,其中以靜止無功發(fā)生器最為優(yōu)越。它具有調(diào)節(jié)速度快、運(yùn)行范圍寬的優(yōu)點,而且在采取多重化、多電平或PWM技術(shù)等措施后,可大大減少補(bǔ)償電流中諧波含量。更重要的是,靜止無功發(fā)生器使用的電抗器和電容元件小,大大縮小裝置的體積和成本。靜止無功發(fā)生器代表著動態(tài)無功補(bǔ)償裝置的發(fā)展方向。 收音機(jī)變頻原理: 所謂“變頻”,就是通過一種叫“變頻器”的電路,將接收到的電臺信號變換成一個頻率比較低但節(jié)目內(nèi)容一樣的“中頻”,然后對“中頻”進(jìn)行放大和“檢波”(取出電臺高頻信號中攜帶的音頻信號[“表示聲音的電信號”],供收聽)。 因為中頻比電臺信號頻率低(現(xiàn)在有些機(jī)器的中頻比電臺信號頻率高,另當(dāng)別論),放大容易,不容易引起自激,靈敏度高,且可以針對固定的中頻做很多的“調(diào)諧回路”,選擇性好。帶有自動增益(放大倍數(shù))控制電路(即所謂的AGC),使強(qiáng)、弱電臺的音量差距變小。
通過改變交流電頻率的方式實現(xiàn)交流電控制的技術(shù)就叫變頻技術(shù) 變頻技術(shù)是應(yīng)交流電機(jī)無級調(diào)速的需要而誕生的。20世紀(jì)60年代后半期開始,電力電子器件從SCR(晶閘管)、GTO(門極可關(guān)斷晶閘管)、BJT(雙極型功率晶體管)、MOSFET(金屬氧化物場效應(yīng)管)、SIT(靜電感應(yīng)晶體管)、SITH(靜電感應(yīng)晶閘管)、MGT(MOS控制晶體管)、MCT(MOS控制品閘管)發(fā)展到今天的IGBT(絕緣柵雙極型晶體管)、HVIGBT(耐高壓絕緣柵雙極型晶閘管),器件的更新促使電力變換技術(shù)的不斷發(fā)展。20世紀(jì)70年代開始,脈寬調(diào)制變壓變頻(PWM—VVVF)調(diào)速研究引起了人們的高度重視。20世紀(jì)80年代,作為變頻技術(shù)核心的PWM模式優(yōu)化問題吸引著人們的濃厚興趣,并得出諸多優(yōu)化模式,其中以鞍形波PWM模式效果最佳。20世紀(jì)80年代后半期開始,美、日、德、英等發(fā)達(dá)國家的VVVF變頻器已投入市場并廣泛應(yīng)用。 VVVF變頻器的控制相對簡單,機(jī)械特性硬度也較好,能夠滿足一般傳動的平滑調(diào)速要求,已在產(chǎn)業(yè)的各個領(lǐng)域得到廣泛應(yīng)用。但是,這種控制方式在低頻時,由于輸出電壓較小,受定子電阻壓降的影響比較顯著,故造成輸出最大轉(zhuǎn)矩減小。另外,其機(jī)械特性終究沒有直流電動機(jī)硬,動態(tài)轉(zhuǎn)矩能力和靜態(tài)調(diào)速性能都還不盡如人意,因此人們又研究出矢量控制變頻調(diào)速。 矢量控制變頻調(diào)速的做法是:將異步電動機(jī)在三相坐標(biāo)系下的定子交流電流Ia、Ib、Ic、通過三相—二相變換,等效成兩相靜止坐標(biāo)系下的交流電流Ia1Ib1,再通過按轉(zhuǎn)子磁場定向旋轉(zhuǎn)變換,等效成同步旋轉(zhuǎn)坐標(biāo)系下的直流電流Im1、It1(Im1相當(dāng)于直流電動機(jī)的勵磁電流;It1相當(dāng)于與轉(zhuǎn)矩成正比的電樞電流),然后模仿直流電動機(jī)的控制方法,求得直流電動機(jī)的控制量,經(jīng)過相應(yīng)的坐標(biāo)反變換,實現(xiàn)對異步電動機(jī)的控制。 矢量控制方法的提出具有劃時代的意義。然而在實際應(yīng)用中,由于轉(zhuǎn)子磁鏈難以準(zhǔn)確觀測,系統(tǒng)特性受電動機(jī)參數(shù)的影響較大,且在等效直流電動機(jī)控制過程中所用矢量旋轉(zhuǎn)變換較復(fù)雜,使得實際的控制效果難以達(dá)到理想分析的結(jié)果。 1985年,德國魯爾大學(xué)的DePenbrock教授首次提出了直接轉(zhuǎn)矩控制變頻技術(shù)。該技術(shù)在很大程度上解決了上述矢量控制的不足,并以新穎的控制思想、簡潔明了的系統(tǒng)結(jié)構(gòu)、優(yōu)良的動靜態(tài)性能得到了迅速發(fā)展。目前,該技術(shù)已成功地應(yīng)用在電力機(jī)車牽引的大功率交流傳動上。 直接轉(zhuǎn)矩控制直接在定子坐標(biāo)系下分析交流電動機(jī)的數(shù)學(xué)模型,控制電動機(jī)的磁鏈和轉(zhuǎn)矩。它不需要將交流電動機(jī)化成等效直流電動機(jī),因而省去了矢量旋轉(zhuǎn)變換中的許多復(fù)雜計算;它不需要模仿直流電動機(jī)的控制,也不需要為解耦而簡化交流電動機(jī)的數(shù)學(xué)模型。 VVVF變頻、矢量控制變頻、直接轉(zhuǎn)矩控制變頻都是交—直—交變頻中的一種。其共同缺點是輸入功率因數(shù)低,諧波電流大,直流回路需要大的儲能電容,再生能量又不能反饋回電網(wǎng),即不能進(jìn)行四象限運(yùn)行。為此,矩陣式交—交變頻應(yīng)運(yùn)而生。由于矩陣式交—交變頻省去了中間直流環(huán)節(jié),從而省去了體積大、價格貴的電解電容。它能實現(xiàn)功率因數(shù)為l,輸入電流為正弦且能四象限運(yùn)行,系統(tǒng)的功率密度大。該技術(shù)目前雖尚未成熟,但仍吸引著眾多的學(xué)者深入研究。 變頻技術(shù)與家用電器 20世紀(jì)70年代,家用電器開始逐步變頻化,出現(xiàn)了電磁烹任器、變頻照明器具、變頻空調(diào)器、變頻微波爐、變頻電冰箱、IH(感應(yīng)加熱)飯堡、變頻洗衣機(jī)等。 20世紀(jì)90年代后半期,家用電器則依托變頻技術(shù),主要瞄準(zhǔn)高功能和省電。比如,要求具有高速高出力、控制性能好、小型輕量、大容量、高舒適感、長壽命、安全可靠、靜音、省電等優(yōu)點。 首先是電冰箱,由于它處于全天工作,采用變頻制冷后,壓縮機(jī)始終處在低速運(yùn)行狀態(tài),可以徹底消除因壓縮機(jī)起動引起的噪聲,節(jié)能效果更加明顯。 其次,空調(diào)器使用變頻后,擴(kuò)大了壓縮機(jī)的工作范圍,不需要壓縮機(jī)在斷續(xù)狀態(tài)下運(yùn)行就可實現(xiàn)冷、暖控制,達(dá)到降低電力消耗,消除由于溫度變動而引起的不適感。近年來,新式的空調(diào)器已采用無刷直流電動機(jī)實現(xiàn)變頻調(diào)速,其節(jié)能效果較交流異步電動機(jī)變頻又提高約10%—15%。為了進(jìn)一步提高裝置的效能,近年來,日本的空調(diào)器又逐步從單純的PWM控制改為PWM十PAM混合控制方式。即較低速時采用PWM控制,保持U/f為一定;當(dāng)轉(zhuǎn)速大于一定值時,將調(diào)制度固定在最大值附近,通過改變直流斬波器的導(dǎo)通占空LL,提高逆變器輸入直流電壓值,從而保持變頻器輸出電壓和轉(zhuǎn)速成比例,這一區(qū)域稱為PAM區(qū)。采用混合控制方式后,變頻器的輸入功率因數(shù)、電機(jī)效率、裝置綜合效率都比單獨PWA4控制時有較大幅度的提高。 近年來,新式的變頻冷藏庫不但耗電量減少、實現(xiàn)靜音化,而且利用高速運(yùn)行能實現(xiàn)大幅度時快速冷凍;在洗衣機(jī)方面,過去使用變頻實現(xiàn)可變速控制,提高洗凈性能,新流行的洗衣機(jī)除了節(jié)能和靜音化外,還在確保衣物柔和洗滌等方面推出新的控制內(nèi)容;電磁烹任器利用高頻感應(yīng)加熱使鍋子直接發(fā)熱,沒有燃?xì)夂碗娂訜岬臒霟岵糠,因此不但安全,還大幅度提高加熱效率,其工作頻率高于聽覺之上,從而消除了飯鍋振動引起的噪聲;IH電飯堡得到的火力比電加熱器更強(qiáng),而且利用變頻可以進(jìn)行火力微調(diào),只要合理設(shè)計加熱感應(yīng)線圈,可得到任意的加熱布局,炊飯性能上了一個檔次;變頻微波爐利用高頻電能給磁控管必要的升壓驅(qū)動,電源結(jié)構(gòu)小,爐內(nèi)空間更寬敞,新式微波爐能任意調(diào)節(jié)電力,并根據(jù)不同食品選擇最佳加熱方式,縮短時間,降低電耗;照明方面,熒光燈使用高頻照明,可提高發(fā)光效率,實現(xiàn)節(jié)能,無閃爍,易調(diào)光,頻率任意可調(diào),鎮(zhèn)流器小型輕量。 變頻技術(shù)正在給形形色色的家電帶來新的革命,并將給用戶帶來更大的福音。今后變頻技術(shù)還將隨著電力電子器件、新型電力變換拓?fù)潆娐贰V波及屏蔽技術(shù)的進(jìn)步而發(fā)展。家用太陽能發(fā)電系統(tǒng)還將給家電增添新的能源。 電力電子裝置帶來的危害及對策 電力電子裝置中的相控整流和不可控二極管整流使輸入電流波形發(fā)生嚴(yán)重畸變,不但大大降低了系統(tǒng)的功率因數(shù),還引起了嚴(yán)重的諧波污染。另外,硬件電路中電壓和電流的急劇變化,使得電力電子器件承受很大的電應(yīng)力,并給周圍的電氣設(shè)備及電波造成嚴(yán)重的電磁干擾(EMl),而且情況日趨嚴(yán)重。許多國家都已制定了限制諧波的國家標(biāo)準(zhǔn),國際電氣電子工程師協(xié)會(IEEE)、國際電工委員會(IEC)和國際大電網(wǎng)會議(CIGRE)紛紛推出了自己的諧波標(biāo)準(zhǔn)。我國政府也分別于1984年和1993年制定了限制諧波的有關(guān)規(guī)定。 1.諧波與電磁干擾的對策 (1)諧波抑制為了抑制電力電子裝置產(chǎn)生的諧波,一種方法是進(jìn)行諧波補(bǔ)償,即設(shè)置諧波補(bǔ)償裝置,使輸入電流成為正弦波。 傳統(tǒng)的諧波補(bǔ)償裝置是采用lC調(diào)諧濾波器,它既可補(bǔ)償諧波,又可補(bǔ)償無功功率。其缺點是,補(bǔ)償特性受電網(wǎng)阻抗和運(yùn)行狀態(tài)影響,易和系統(tǒng)發(fā)生并聯(lián)諧振,導(dǎo)致諧波放大,使LC濾波器過載甚至燒毀。此外,它只能補(bǔ)償固定頻率的諧波,效果也不夠理想。但這種補(bǔ)償裝置結(jié)構(gòu)簡單,目前仍被廣泛應(yīng)用。 電力電子器件普及應(yīng)用之后,運(yùn)用有源電力濾波器進(jìn)行諧波補(bǔ)償成為重要方向。其原理是,從補(bǔ)償對象中檢測出諧波電流,然后產(chǎn)生一個與該諧波電流大小相等極性相反的補(bǔ)償電流,從而使電網(wǎng)電流只含有基波分量。這種濾波器能對頻率和幅值都變化的諧波進(jìn)行跟蹤補(bǔ)償,且補(bǔ)償特性不受電網(wǎng)阻抗的影響。它已得到人們的重視,并將逐步推廣應(yīng)用。 另一種方法是改革變流器的工作機(jī)理,做到既抑制諧波,又提高功率因數(shù),這種變流器稱單位功率因數(shù)變流器。 大容量變流器減少諧波的主要方法是采用多重化技術(shù):將多個方波疊加以消除次數(shù)較低的諧波,從而得到接近正弦的階梯波。重數(shù)越多,波形越接近正弦,但電路結(jié)構(gòu)越復(fù)雜。 幾千瓦到幾百千瓦的高功率因數(shù)變流器主要采用PWM整流技術(shù)。它直接對整流橋上各電力電子器件進(jìn)行正弦PWM控制,使得輸入電流接近正弦波,其相位與電源相電壓相位相同。這樣,輸入電流中就只含與開關(guān)頻率有關(guān)的高次諧波,這些諧波次數(shù)高,容易濾除,同時也使功率因數(shù)接近1。采用PWM整流器作為AC/DC變換的 PWM逆變器,就是所謂的雙PWM變頻器。它具有輸入電壓、電流頻率固定,波形均為正弦,功率因數(shù)接近1,輸出電壓、電流頻率可變,電流波形也為正弦的特點。這種變頻器可實現(xiàn)四象限運(yùn)行,從而達(dá)到能量的雙向傳送。 小容量變流器為了實現(xiàn)低諧波和高功率因數(shù),一般采用二極管整流加PWM斬波,常稱之為功率因數(shù)校正(PEC)。典型的電路有升壓型、降壓型、升降壓型等。 (2)電磁干擾抑制解決EMI的措施是克服開關(guān)器件導(dǎo)通和關(guān)斷時出現(xiàn)過大的電流上升率di/dt和電壓上升率du/dt,目前比較引入注目的是零電流開關(guān)(ZCS)和零電壓開關(guān)(ZVS)電路。方法是: ①開關(guān)器件上串聯(lián)電感,這樣可抑制開關(guān)器件導(dǎo)通時的di/dt,使器件上不存在電壓、電流重疊區(qū),減少了開關(guān)損耗; ②開關(guān)器件上并聯(lián)電容,當(dāng)器件關(guān)斷后抑制du/dt上升,器件上不存在電壓、電流重疊區(qū),減少了開關(guān)損耗; ③器件上反并聯(lián)二極管,在二極管導(dǎo)通期間,開關(guān)器件呈零電壓、零電流狀態(tài),此時驅(qū)動器件導(dǎo)通或關(guān)斷能實現(xiàn)ZVS、ZCS動作。 目前較常用的軟開關(guān)技術(shù)有: ①部分諧振PWM。為了使效率盡量與硬開關(guān)時接近,必須防止器件電流有效值的增加。因此,在一個開關(guān)周期內(nèi),僅在器件開通和關(guān)斷時使電路諧振,稱之為部分諧振。 ②無損耗緩沖電路。串聯(lián)電感或并聯(lián)電容上的電能釋放時不經(jīng)過電阻或開關(guān)器件,稱無損耗緩沖電路,常不用反并聯(lián)二極管。 在電機(jī)控制中主開關(guān)器件多采用 IGBT,IGBT關(guān)斷時有尾部電流,對關(guān)斷損耗很有影響。因此,關(guān)斷時采用零電流時間長的ZCS更合適。 2、功率因數(shù)補(bǔ)償早期的方法是采用同步調(diào)相機(jī),它是專門用來產(chǎn)生無功功率的同步電機(jī),利用過勵磁和欠勵磁分別發(fā)出不同大小的容性或感性無功功率。然而,由于它是旋轉(zhuǎn)電機(jī),噪聲和損耗都較大,運(yùn)行維護(hù)也復(fù)雜,響應(yīng)速度慢,因此,在很多情況下已無法適應(yīng)快速無功功率補(bǔ)償?shù)囊蟆?BR> 另一種方法是采用飽和電抗器的靜止無功補(bǔ)償裝置。它具有靜止型和響應(yīng)速度快的優(yōu)點,但由于其鐵心需磁化到飽和狀態(tài),損耗和噪聲都很大,而且存在非線性電路的一些特殊問題,又不能分相調(diào)節(jié)以補(bǔ)償負(fù)載的不平衡,所以未能占據(jù)靜止無功補(bǔ)償裝置的主流。 隨著電力電子技術(shù)的不斷發(fā)展,使用SCR、GTO和IGBT等的靜止無功補(bǔ)償裝置得到了長足發(fā)展,其中以靜止無功發(fā)生器最為優(yōu)越。它具有調(diào)節(jié)速度快、運(yùn)行范圍寬的優(yōu)點,而且在采取多重化、多電平或PWM技術(shù)等措施后,可大大減少補(bǔ)償電流中諧波含量。更重要的是,靜止無功發(fā)生器使用的電抗器和電容元件小,大大縮小裝置的體積和成本。靜止無功發(fā)生器代表著動態(tài)無功補(bǔ)償裝置的發(fā)展方向。 收音機(jī)變頻原理: 所謂“變頻”,就是通過一種叫“變頻器”的電路,將接收到的電臺信號變換成一個頻率比較低但節(jié)目內(nèi)容一樣的“中頻”,然后對“中頻”進(jìn)行放大和“檢波”(取出電臺高頻信號中攜帶的音頻信號[“表示聲音的電信號”],供收聽)。 因為中頻比電臺信號頻率低(現(xiàn)在有些機(jī)器的中頻比電臺信號頻率高,另當(dāng)別論),放大容易,不容易引起自激,靈敏度高,且可以針對固定的中頻做很多的“調(diào)諧回路”,選擇性好。帶有自動增益(放大倍數(shù))控制電路(即所謂的AGC),使強(qiáng)、弱電臺的音量差距變小。
抱歉,此頁面的內(nèi)容受版權(quán)保護(hù),復(fù)制需扣除次數(shù),次數(shù)不足時需付費(fèi)購買。
如需下載請點擊:點擊此處下載
掃碼付費(fèi)即可復(fù)制
syn | 鐵塔 | 隨E行 | 時間色散 | 動態(tài)信道分配 | PBU | 安規(guī)認(rèn)證 | TD-HSUPA | 北電 | tom | TD-HSDPA | vamos |
移動通信網(wǎng) | 通信人才網(wǎng) | 更新日志 | 團(tuán)隊博客 | 免責(zé)聲明 | 關(guān)于詞典 | 幫助