據(jù)港臺媒體報導,隨著WiFi標準的改善、802.11芯片體積不斷減小而功能不斷擴充,無線區(qū)域網(wǎng)絡語音(VoWLAN)電話系統(tǒng)的可行性也逐漸提升。雙頻移動電話可使用WLAN連線提供可靠的屋內(nèi)話音服務,而寬帶電話服務則通過WLAN連結(jié)筆記電腦。另一方面,架構(gòu)于WLAN的網(wǎng)絡電話手機,由于只需一臺WLAN基地站便能輕易支持多個手機,與具備低成本優(yōu)勢的傳統(tǒng)無線電話機相比毫不遜色。
802.11標準建立了提供可靠、高性能的WiFi網(wǎng)絡電話系統(tǒng)所需之基本機制。其中顯著的例子為安全性(802.11i/WPA)與QoS(802.11e/Wi-Fi多媒體)。此外,諸如Atheros開放程序碼的JumpStart for Wireless這類單鍵安全設定法,可讓所有使用者即使在手機無法顯示英文字母與數(shù)字的狀況下,仍能快速設定WLAN網(wǎng)絡電話手機的組態(tài)。
WLAN網(wǎng)絡電話系統(tǒng)中其中一項尚未標準化的項目為輪詢方法(polling method)。因此本文就現(xiàn)有的兩種輪詢方法,分別討論其不同的優(yōu)點和缺點,并且特別著墨于移動裝置中最關鍵的要素──耗電量。
所有降低耗電量的方法,均必須盡可能讓用戶裝置使用低功耗的睡眠模式,而802.11芯片必需以睡眠模式中最低的耗電量以支持此作法802.11芯片必須以睡眠模式的最低可能耗電量支持此種作法。例如,Atheros 的AR6000移動型射頻單芯片(radio-on-a-chip mobile;ROCm)裝置,實現(xiàn)了極低耗能量的睡眠模式,以及自動省電模式(Automatic Power-Save Delivery;APSD)技術。ROCm同時提供絕佳的性能,能啟用高速傳輸以縮短發(fā)送/接收的時間,而芯片上的嵌入式處理器之自給式驅(qū)動程序,可分攤處理主機處理器上的經(jīng)常性的網(wǎng)絡維護操作。通過以上的做法與其他省電策略,ROCm芯片能改善WLAN操作的耗電效率,效果可比傳統(tǒng)WLAN芯片的高達六倍,因此能改善電池壽命,F(xiàn)時可實現(xiàn)各種VoIP應用的新一代802.11裝置,就包含這類的芯片。
將語音導入WLAN
802.11 WLAN可利用高性能的元件以提供可靠的整體性能,然而,此媒體的特性在處理語音流量時,仍面對相當嚴苛的挑戰(zhàn)。由于WLAN使用免執(zhí)照頻譜,因此必須容忍來自不同外部裝置與其他WLAN的大量干擾。此外,如同其他IP網(wǎng)絡,WLAN并不支持同步操作(synchronous operation)。因此,通常無法在微秒級下做預測。由于VoIP是以固定時間間隔產(chǎn)生VoIP封包(即訊框)的固定數(shù)碼速率(CBR)應用,因此WLAN的CSMA競爭法明顯缺乏中央同步時序(centralized synchronous timing)。
此現(xiàn)象與移動電話系統(tǒng)所實作的標準電話機制形成更大的對比。移動電話系統(tǒng)使用授權(quán)頻譜與小心規(guī)劃的基地站部署,務求將無線電干擾減至最低。移動電話系統(tǒng)從電話到骨干線路都保持同步,于是能掌握微秒層級的時序而且永不偏離,也因此能預知容量的大小,且容量提供給單一類別服務設計應用:語音。
這些移動電話系統(tǒng)的特性令它能輕易符合ITU-T建議的G.114標準,此標準指定端點對端點延遲預算不得大于150微秒。由于移動電話系統(tǒng)整體的架構(gòu)采用可決定的方式應用時脈語音封包,因此不需因為要確保低延遲,而對語音封包以特殊的服務品質(zhì)(QoS)機制排定優(yōu)先順序。移動電話系統(tǒng)利用現(xiàn)有時槽、多工與語音服務管理加入資料服務。
WLAN則剛好相反,語音服務必須借助于原本針對資料而設計的功能。WLAN僅能用到端點對端點延遲預算150微秒的一部份,如果兩端都使用WLAN進行對話,那么延遲預算還要更進一步縮限。此外,若語音封包必須跨越網(wǎng)際網(wǎng)絡或忙碌的企業(yè)網(wǎng)絡,那么封包將無法避免延遲抵達,有時甚至無法抵達。遲到的封包可能成群抵達。
只要使用過舊式轉(zhuǎn)碼器在網(wǎng)際網(wǎng)絡或通用WLAN中以語音通信的人,都會熟悉這些問題。建立高品質(zhì)VoWLAN的作法之一是改變WLAN以符合傳統(tǒng)編碼器的需要。事實上,無論是全時或分時,專屬實作均顯示802.11 MAC可改變?yōu)槭褂猛、時槽式的TDMA作法;此作法能有效解決以WLAN傳輸話音問題,不過這類系統(tǒng)通常與現(xiàn)有的WiFi裝置與網(wǎng)絡不相容。
雖然完全同步的網(wǎng)絡頗具吸引力,但缺乏嚴格同步卻也正是802.11的主要強項。這些年來,我們可在以太網(wǎng)絡和ATM網(wǎng)絡之間的競爭中看到這類IP網(wǎng)絡的優(yōu)點。當可靠而具適應式(夠好)之通道存取對上嚴格時(完美)序式作法時,夠令人滿意的作法通常因更具多樣性而比受歡迎。
在設計VoWLAN系統(tǒng)時避免使用同步作法的另一個原因,是這些系統(tǒng)并非在封閉環(huán)境下運作。使用WLAN傳輸語音的主要賣點,是讓雙模移動電話與其他語音裝置能利用現(xiàn)有的WLAN基礎結(jié)構(gòu)。
新一代的解碼器
改善現(xiàn)有802.11基礎結(jié)構(gòu)的方法之一,是利用針對網(wǎng)際網(wǎng)絡應用而開發(fā)的比新語音解碼器。這些解碼器大幅簡化VoWLAN的設計。效率不彰的網(wǎng)際網(wǎng)絡電話環(huán)境,促成解碼器的開發(fā),能以極低位的速度達到良好的語音品質(zhì)。
例如:廣受歡迎的Skype網(wǎng)絡電話系統(tǒng)核心之iLBC解碼器,能提供相當于高端ITU G.729解碼器的特性;ITU解碼器只以8kbps,能提供公用電話般的語音品質(zhì);而來自Global IP Sound的iLBC解碼器,所需的位速率稍高-13.3kbps。Global IP Sound稱他們的編碼器語音品質(zhì)優(yōu)于PSTN,而且能忍受高達30%的封包損失。網(wǎng)際網(wǎng)絡工程研究團隊(Internet Engineering Task Force;IETF)已對此解碼器制定標準。CableLabs應用于多媒體終端配接器與媒體閘道的PacketCable影音解碼器規(guī)格以被指定其為必要的解碼器。
有了此類解碼器,必要的VoWLAN語音品質(zhì)就更易于實現(xiàn),而且也能解決網(wǎng)際網(wǎng)絡所造成的延遲與抖動現(xiàn)象,故此特別適合如802.11這種非同步開放系統(tǒng)使用。既然解碼器如此靈活,為何還要發(fā)展復雜的時序與同步方法呢?
挑戰(zhàn)耗電量
盡管現(xiàn)今的解碼器如此靈活,時序仍然是十分重要的,因為它對耗電量影響重大。移動電話系統(tǒng)的同步特性,使它能輕易而直接地實現(xiàn)手機睡眠/喚醒排程。手機能在封包之間知道能安全地進入睡眠模式。然而,802.11的裝置就永遠不知道何時可能接收突發(fā)的流量,或因其他理由而必須回應存取點。
雖然移動電話與VoWLAN系統(tǒng)之間有此差異,后者還是必須讓它的電池壽命能媲美移動電話手機。雙模移動電話手機的兩種類型功能都使用同一顆電池,因此勢必會互相比比。
說到這里,我們不禁又會想令WLAN同步操作。若存取點知道手機于何時進入睡眠模式,只在它準備好時進行傳輸,此時手機就可類似移動電話,定期進入睡眠模式。存取點不必在VoIP訊框抵達時立刻傳輸至手機,必要時可先將這些訊框置于緩沖區(qū)。
目前有兩種操作模式,能以足夠的同步在802.11 WLAN中實作良好的省電時序技術,因此不需完全同步操作。這些模式包括以‘混合控制功能(Hybrid Control Function;HCF)’控制的通道存取(HCF Controlled Channel Access;HCCA)以及增強分散式通道存取(Enhanced Distributed Channel Access;EDCA)。此兩種模式都是IEEE 802.11e標準當中,服務品質(zhì)(QoS)規(guī)定的一環(huán),而兩者皆可用于發(fā)展中的省電傳訊方法,于存取點和站臺之間以同步固定數(shù)碼速率傳輸,而不需對整個WLAN進行同步。
以HCCA進行同步
HCCA模式就如同N-body同步機制,由存取點為N個站臺設定CBR輪詢排程。盡管典型的802.11系統(tǒng)無規(guī)律性,站臺還是盡可能地按排程同步。將這樣的配置描述為N-body系統(tǒng)是相當合理的,因為對輪詢排程上任一站的時序干擾,都會影響到其他N-1個站的時序。
當AP通過流量規(guī)格(TSPEC)接收到來自站臺的CBR要求時,HCCA機制便發(fā)揮作用,然后AP與該站進行CBR排程的通信。一旦AP接受站臺作為輪詢的用戶,此站臺通常會進入睡眠狀態(tài),直到來自AP預期的下行輪詢或輪詢加VoIP訊框抵達為止(圖一)。在規(guī)定的時間內(nèi)(架構(gòu)于OFDM的802.11a/g為9μs,802.11b則會更久),站臺以上行VoIP資料(或QoS-NULL)訊框回應。若站臺發(fā)送上行資料,AP就以ACK回應。
要知道此機制的耗電效率,讓我們先考慮站臺需保持喚醒狀態(tài)的時間比例。HCCA機制如需正確運作,在AP的下行輪詢前,站臺必須從睡眠模式中喚醒。根據(jù)硬件設計而定,喚醒的程序約需0.1到1.0微秒。然后站臺必須等到下行輪詢抵達,而輪詢可能在站臺預期的抵達時間到時仍未抵達。不同的原因如干擾、通道上長持續(xù)時間的訊框、AP中內(nèi)部排程沖突(輪詢其他站臺)、更高優(yōu)先順序的操作(AP必須傳輸一Beacon)、前一訊框超出預期的交換時間或是AP與站臺之間的相對時脈偏移,均會造成延遲。不過一旦下行輪詢抵達,排程就會變得可預測。根據(jù)所選的解碼器與PHY速率,上行/下行訊框交換應在不到1微秒的時間內(nèi)發(fā)生。
在HCCA機制中,時序的不確定性主要來自CBR輪詢排程的延遲、失敗后可能的重試以及使用可變PHY速率時,造成傳輸時間的變化。根據(jù)這些不確定性,站臺喚醒時間的約為2~5微秒。以20微秒的解碼器周期,此喚醒睡眠比所達成之效率比值為75%以上。
HCCA的固定位率排程
▲圖一:存取站可實作802.11e標準中指定的HCCA操作模式,提供可預測時間的VoIP輪詢排程,以在WLAN站臺能以睡眠模式減少耗電量時進行管理。