基于單片機和FPGA的掃頻儀設計

一個網(wǎng)絡的頻率特性包括幅頻特性和相頻特性,在系統(tǒng)設計時,各個網(wǎng)絡的頻率特性對該系統(tǒng)的穩(wěn)定性、工作頻帶、傳輸特性等都具有重要影響。實際操作中,掃頻儀大大簡化了測量操作,提高了工作效率,達到了測量過程快速、直觀、準確、方便的目的,在生產、科研、教學上得到廣泛運用。本設計采用數(shù)字頻率合成技術產生掃頻信號,以單片機和FPGA為控制核心,通過A/D和D/A轉換器等接口電路,實現(xiàn)掃頻信號頻率的步進調整、數(shù)字顯示及被測網(wǎng)絡幅頻特性與相頻特性參數(shù)的顯示。

1 系統(tǒng)總體方案及設計框圖

1.1 系統(tǒng)總體方案

將輸出頻率步進可調的正弦掃頻信號源作為被測網(wǎng)絡的激勵Vi,可得被測網(wǎng)絡的響應為V0。通過測量各頻率點的幅度就可得到V0和Vi的有效值,兩者之比就是該點的幅度頻率響應;對V0和Vi進行過零比較、整形,再送到FPGA測量相位差,即可得到相頻特性。

1.2 系統(tǒng)總體設計框圖

系統(tǒng)通過鍵盤掃描得到外界設置的掃頻范圍和頻率步進,通過調用DDS控模塊控制DAC904,輸出掃頻信號。由于信號在被測網(wǎng)絡阻帶內會有很大的衰減,故用程控放大處理經(jīng)被測網(wǎng)絡的掃頻信號之后,利用AD637進行有效值采樣,LM311進行整形。信號有效值經(jīng)MAXl270進行AD轉換后得到有效值的數(shù)字量,整形后的信號經(jīng)測相模塊處理得到相位差值。在FPGA中寫入2個RAM存放被測信號的有效值和相位差值。完成一次掃頻后通過波形顯示模塊將幅頻、相頻曲線顯示在示波器上,并將特定頻率點的幅度和相位差值在液晶顯示器上進行顯示。系統(tǒng)實現(xiàn)框圖如圖1所示。

2 系統(tǒng)功能部分設計

2.1 掃頻信號的產生

直接數(shù)字合成(DDFS)信號源。它是一種完全數(shù)字化的方法:先將一個周期的正弦波(或者其他波形)的離散樣點幅值的數(shù)字量預先存儲于ROM或者RAM中,按一定的地址增量間隔讀出,經(jīng)D/A轉換后成為不同頻率的模擬正弦波信號波形,再經(jīng)低通濾掉毛刺即可得到所需頻率的輸入信號。按此原理,DDS可以合成任意波形,且可以精確控制相位,頻率也非常穩(wěn)定。利用FPGA制作起來相當容易,且掃頻步進實現(xiàn)簡單。設FPGA內部的參考頻率源的頻率為fclk,采用計數(shù)容量為2N的相位累加器(N為相位累加器的位數(shù)),頻率控制字為M,則DDS系統(tǒng)輸出信號的頻率fout=fclk/2N×M。頻率分辨率為:△f=fclk/2N。

若選取晶振頻率為40 MHz,頻率控制字為24位,相位累加器的位數(shù)為31位,則輸出頻率范圍為0.02 Hz~312 kHz,步進頻率為40 MHz/231≈0.02 Hz。

系統(tǒng)采用高速14-bit電流輸出型D/A轉換器DAC904制作DDS掃頻信號源。通過FPGA給其20 MHz的時鐘信號以輸出10 Hz~100 kHz的掃頻信號。該器件制作成的PCB板中,很好地考慮了接地,使得輸出信號在頻率為1 MHz可以達到無明顯失真。DAC904采用內部基準和雙極性接法,輸出信號幅值范圍為0~5 V。其原理圖如圖2所示。

 

作者:徐安瑩 袁 丁 徐逢秋   來源:電子設計工程
微信掃描分享本文到朋友圈
掃碼關注5G通信官方公眾號,免費領取以下5G精品資料
  • 1、回復“YD5GAI”免費領取《中國移動:5G網(wǎng)絡AI應用典型場景技術解決方案白皮書
  • 2、回復“5G6G”免費領取《5G_6G毫米波測試技術白皮書-2022_03-21
  • 3、回復“YD6G”免費領取《中國移動:6G至簡無線接入網(wǎng)白皮書
  • 4、回復“LTBPS”免費領取《《中國聯(lián)通5G終端白皮書》
  • 5、回復“ZGDX”免費領取《中國電信5GNTN技術白皮書
  • 6、回復“TXSB”免費領取《通信設備安裝工程施工工藝圖解
  • 7、回復“YDSL”免費領取《中國移動算力并網(wǎng)白皮書
  • 8、回復“5GX3”免費領取《R1623501-g605G的系統(tǒng)架構1
  • 本周熱點本月熱點

     

      最熱通信招聘

      最新招聘信息