基于復合左右手傳輸線的帶通濾波器小型化設(shè)計[圖]

相關(guān)專題: 毫米波 5G

摘要:提出了一種工作于X波段的基于復合左右手傳輸線理論的零階諧振器單元。利用兩個這樣的零階諧振器單元設(shè)計出一種工作于9.2GHz~9.5GHz的新型帶通濾波器,對設(shè)計進行全波的仿真,并且將全波仿真結(jié)果和實驗測量結(jié)果進行了對比。運用基于S參數(shù)的提取方法對該濾波器性能進行了理論分析。結(jié)果表明,該濾波器與基于耦合微帶線形式的傳統(tǒng)濾波器相比,保持了相對小的帶內(nèi)波紋和良好的截止特性,尺寸縮小了80% 。

1968年,前蘇聯(lián)科學家VESELAGO從Maxwell方程出發(fā)分析了電磁波在介電常數(shù)ε和磁導率μ同時為負的介質(zhì)中的傳播特性[1],即電磁波在這種物質(zhì)中傳播時電場E、磁場H和波矢量k成左手關(guān)系,定義這種材料為左手材料LHMs(Left Hand Materials)。1996年和1999年,英國帝國理工大學的PENDRY教授分別提出導體桿(Wires)[2]和開口諧振環(huán)SRRs(Split Ring Resonator)[3]來分別實現(xiàn)負介電常數(shù)ε和負磁導率μ。2001年,美國加州大學的SMITH D R等人,通過組合導體桿和開口諧振環(huán)陣列[4],首次構(gòu)造出了微波頻段ε和μ同時為負的左手材料,取得了突破性進展。復合左右手傳輸線可以視為左手材料基于電路理論的實現(xiàn)形式,由CALOZ等人于2002年提出[5]。其左手傳輸線等效電路是由串聯(lián)電容與并聯(lián)電感構(gòu)成,實際電路形式為交指電容和短截線電感。由于寄生參數(shù)效應,其等效電路會出現(xiàn)串聯(lián)電感與并聯(lián)電容,而串聯(lián)電感與并聯(lián)電容構(gòu)成傳統(tǒng)的右手傳輸線。因此理想左手傳輸線并不存在,而是以復合左右手傳輸線的形式存在。

通信系統(tǒng)中經(jīng)常采用帶通濾波器來抑制寄生信號。隨著微波毫米波技術(shù)的快速發(fā)展,通信系統(tǒng)對微波濾波器提出了更高的性能要求,例如小型化、低插入損耗、高阻帶衰減。而復合左右手傳輸線,已經(jīng)被廣泛應用于濾波器領(lǐng)域。作為一般微波器件,基于其零階諧振特性,其尺寸可以突破二分之一工作波長的限制。近來,這種傳輸線已經(jīng)被用來實現(xiàn)超寬帶濾波器的小型化[6]。其電路形式除交指電容和短截線電感之外,還有平面蘑菇形式[7]、過孔蘑菇形式[8]以及互補諧振環(huán)與開縫微帶線組合的形式[9]等。其中大多數(shù)是以模仿左手傳輸線等效電路中的串聯(lián)電容和并聯(lián)電感的形式而實現(xiàn)的。本文基于左手傳輸線等效電路,提出了一種新型的基于復合左右手傳輸線理論的諧振器,并且利用兩個這樣的諧振單元,構(gòu)造了一種工作于9.2GHz~9.5GHz的帶通濾波器,可應用于搜救雷達頻段。與傳統(tǒng)的耦合微帶線形式的帶通濾波器相比,在兼顧性能的前提下,其實際占用尺寸縮小了80%。并且通過將基于有限元的HFSS全波仿真結(jié)果與基于矩量法的ADS仿真結(jié)果和實際測量結(jié)果對比,分析了該小型化濾波器的性能。

1 耦合微帶線濾波器設(shè)計

作為復合左右手傳輸線對微波濾波器的小型化對比,以用于搜救雷達的帶通濾波器為例。該帶通濾波器采用耦合微帶線形式,通帶范圍是9.2GHz~9.5GHz,中心頻率9.35GHz,相對帶寬0.03,與50Ω阻抗匹配。介質(zhì)基板為F4B,相對介電常數(shù)2.65,厚度1mm,損耗正切0.0019。為了獲得較陡峭的阻帶衰減,采用5級耦合微帶線結(jié)構(gòu)。通過ADS優(yōu)化仿真,將優(yōu)化結(jié)果導入到電路版圖,尺寸標注如圖1所示。圖2是電路仿真結(jié)果,對電路版圖產(chǎn)生的仿真結(jié)果沒有進一步微調(diào),目的是獲得該條件下耦合微帶線濾波器的一般尺寸即可,從而與基于復合左右手傳輸線原理構(gòu)成的小型化濾波器的尺寸對比。

圖1中,耦合微帶線中心對稱。經(jīng)過優(yōu)化仿真,尺寸優(yōu)化結(jié)果為W=2.73mm,L=5.36mm,W1=1.156mm,W2=1.675mm,W3=1.702mm,L1=5.15mm,L2=5.08mm,L3=5.0945mm,S1=0.487mm,S2=1.9mm,S3=2.1mm。帶內(nèi)插損<1dB,通帶波紋<0.5dB。最終,該濾波器整體占用尺寸約為為19mm×36mm。

2 基于復合左右手傳輸線理論的帶通濾波器設(shè)計

在普通微帶線中,只有正的諧振模式。在無耗情況下進行考慮,βl=mπ,(m=1,2,3…),β為傳播常數(shù)。諧振頻率決定腔的物理長度,即當諧振腔的長度為半波長的整數(shù)倍才會發(fā)生諧振,使得器件的尺寸大小受到了限制。這樣,基模(m=1)的微帶諧振腔長度至少為l=1/2·λ。

而CRLH TL的傳播常數(shù)可以為負(對應傳輸模式m=-1,-2…),可以為正(m=1,2…),也可以為零(m=0),這就使其具有了零模傳輸?shù)奶匦,即零階諧振特性。由理論推導可以看出,此諧振模式與器件的尺寸無關(guān)。進一步運用Bloch-Floquet理論推導發(fā)現(xiàn),其中心頻率只依賴于結(jié)構(gòu)本身加載的電容與電感。因此,這個特性可以被用來研究實現(xiàn)微波器件的小型化。

理想左手傳輸線由串聯(lián)電容和并聯(lián)電感組成,因此,圖3所示的諧振單元可以來模仿這種電路的構(gòu)成形式:微帶線與該結(jié)構(gòu)單元之間的縫隙等效為串聯(lián)電容,該結(jié)構(gòu)單元的中心短截線通過過孔接地等效為并聯(lián)電感;鍏(shù)與耦合微帶線濾波器相同。由于加工精度的限制,該單元饋線設(shè)置為近似50Ω,寬度Ws=2.8mm,長度Fs=5.4mm,過孔直徑為0.3mm,圓形覆銅焊盤直徑0.7mm。該單元兩邊臂長C=3.2mm,單元與饋線縫隙為0.2mm。當B1=3.6mm, B2=3.4mm時,該諧振單元諧振于9GHz,對該單元結(jié)構(gòu)進行矩量法仿真,并對端口進行去嵌套處理,取去嵌套距離為Fs,即去嵌套邊界剛好取到縫隙電容邊緣。其傳輸特性如圖4所示。通過調(diào)節(jié)中心短截線電感的長度或者饋線與單元間縫隙寬度可以大范圍調(diào)諧該結(jié)構(gòu)單元的諧振中心頻率。例如,隨著中心短截線長度的減小,該諧振單元的謝振頻率升高,如圖5所示。

為了展寬工作帶帶寬,克服單個單元帶寬窄的缺點,將兩個圖3所示的單元級聯(lián)。單元級聯(lián)會使縫隙電容增大,中心短截線的電感減小,為了使帶通濾波器工作在9.2GHz~9.5GHz,應在級聯(lián)狀態(tài)下對單個單元的臂長進行調(diào)諧,并調(diào)節(jié)兩個單元的間距,使其耦合程度達到最佳,表現(xiàn)出良好的通帶特性。最終,B1=3.6mm,B2=3.4mm,C=3.2mm,G=0.2mm,其他尺寸不變。兩個單元間距D=0.8mm。加上饋線與單元縫隙電容的距離,該結(jié)構(gòu)兩單元級聯(lián)尺寸為14mm×8.2mm(計入饋線長度)。同樣進行去嵌套處理,距離兩饋線端口距離Fs,即去嵌套邊界取到縫隙電容邊緣。其ADS矩量法和HFSS三維有限元仿真結(jié)果如圖6所示。

從傳輸特性曲線可知,在通帶內(nèi),插入損耗<1.5dB,通帶波紋<0.5dB。阻帶衰減有一定的惡化,但是在可以接受的范圍內(nèi)。通過MAO S G提出的基于S參數(shù)的電磁參數(shù)提取方法,得到該結(jié)構(gòu)的折射率n,然后根據(jù)等式β=jω·Re(n)得到該結(jié)構(gòu)的色散曲線關(guān)系,如圖7所示,該結(jié)構(gòu)在工作頻率9.2GHz~9.5GHz附近β近似于0,使得該器件的尺寸幾乎不受1/2工作波長的影響,尺寸得以大大減小。

3 測量結(jié)果

與傳統(tǒng)耦合微帶線濾波器相比,該結(jié)構(gòu)實際占用尺寸縮小了80%。兩種濾波器的傳輸特性測量結(jié)果如圖8和圖9所示。耦合微帶線濾波器測量結(jié)果與仿真結(jié)果相差較大,這是由于加工精度的原因,不能精確實現(xiàn)優(yōu)化結(jié)果。復合左右手傳輸線的測量結(jié)果與仿真比較,性能指標基本實現(xiàn)。帶內(nèi)波紋增大,但仍然小于0.6dB。插入損耗增大,但小于2.7dB,這是由于基板損耗和厚度變化造成的。

本文提出了一種工作于9GHz頻段的基于復合左右手傳輸線理論的零階諧振器單元。該小型化濾波器與基于耦合微帶線形式的傳統(tǒng)濾波器相比,尺寸縮小了80%,同時保持了相對低的插入損耗和良好的截止特性。

參考文獻

[1] VESELAGO V G.The electrodynamics of substances with simultaneously negative values of ε and μ[J].Sov Phys Usp,1968,10(4):509-514.

[2] PENDRY J B,HOLDEN A J,STEWART W J,et al. Extremely low frequency plasmons in metallic mesostructures[J]. Phys.Rev.Lett.1996,76:4773.

[3] PENDRY J B,HOLDEN A J,ROBBINS D J,et al. Magnetism from conductors,and enhanced non-linear phenomena[J].IEEE Trans.Microw.Theor.Techn,1999,47(11):2075-2084.

[4] SHELBY R A,SMITH D R,SCHULTZ S.Experimental verification of a negative index of refraction[J].SCIENCE, 2001,292(77):77-79.

[5] CALOZ C,ITOH T.Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH line[J].in Proceedings of IEEE Antennas and Propagation Society International Symposium,Indianapolis,USA,June 2002:412-415.

[6] KAHNG S,JU J.Design of the UWB bandpass filter based on the 1 cell of microstrip CRLH-TL [J].in IEEE ICMMT 2008 Proc,2008,1(44):69-72.

[7] LI Jiu Sheng,DU Tie Ying,LI Jian Rui. Application of CRLH transmission lines in microstrip filter [J].IEEE International Symposium on In Microwave,Antenna,Propagation and EMC Technologies for Wireless Communications,2007:378-381.

[8] LEE J Y,KIM D J,LEE J H. High order bandpass filter using the first negative resonant mode of composite right/left-handed transmission line[J].Microwave and Optical Technology Letters,2009,51(5):1182-1185.

[9] LI C,LI F.Microstrip bandpass filters based on zerothorder resonators with complementary split ring resonators,IET Microw[J].Antennas Propag,2009,3(2):276-280.

作者:王恒 丁君 陳沛林 來源:電子技術(shù)應用2011年第4期


微信掃描分享本文到朋友圈
掃碼關(guān)注5G通信官方公眾號,免費領(lǐng)取以下5G精品資料
  • 1、回復“YD5GAI”免費領(lǐng)取《中國移動:5G網(wǎng)絡(luò)AI應用典型場景技術(shù)解決方案白皮書
  • 2、回復“5G6G”免費領(lǐng)取《5G_6G毫米波測試技術(shù)白皮書-2022_03-21
  • 3、回復“YD6G”免費領(lǐng)取《中國移動:6G至簡無線接入網(wǎng)白皮書
  • 4、回復“LTBPS”免費領(lǐng)取《《中國聯(lián)通5G終端白皮書》
  • 5、回復“ZGDX”免費領(lǐng)取《中國電信5GNTN技術(shù)白皮書
  • 6、回復“TXSB”免費領(lǐng)取《通信設(shè)備安裝工程施工工藝圖解
  • 7、回復“YDSL”免費領(lǐng)取《中國移動算力并網(wǎng)白皮書
  • 8、回復“5GX3”免費領(lǐng)取《R1623501-g605G的系統(tǒng)架構(gòu)1
  • 本周熱點本月熱點

     

      最熱通信招聘

      最新招聘信息