摘要:針對(duì)傳統(tǒng)磁通門(mén)信號(hào)處理電路中模擬元件的缺點(diǎn),設(shè)計(jì)一種基于現(xiàn)場(chǎng)可編程門(mén)陣列(FPGA)的數(shù)字磁通門(mén)系統(tǒng)。整個(gè)系統(tǒng)采用閉環(huán)結(jié)構(gòu),由激勵(lì)產(chǎn)生模塊、信號(hào)處理拱塊和負(fù)反饋模塊組成。外圍模擬電路用高速D/A、A/D芯片取代,有利于系統(tǒng)溫度穩(wěn)定性的提到。FPGA內(nèi)的數(shù)字邏輯實(shí)現(xiàn)了磁通門(mén)信號(hào)解算、激勵(lì)正弦信號(hào)發(fā)生、D/A、A/D輸入/輸出串并轉(zhuǎn)換的功能,首先用硬件描述語(yǔ)言(HDL)設(shè)計(jì)并仿真,然后下載、配置到FPGA中,調(diào)試完成后進(jìn)行實(shí)驗(yàn),通過(guò)實(shí)時(shí)處理雙鐵芯磁通門(mén)傳感器探頭輸出信號(hào)對(duì)系統(tǒng)進(jìn)行測(cè)試。實(shí)驗(yàn)結(jié)果證實(shí)了系統(tǒng)功能的正確性。閉環(huán)結(jié)構(gòu)的采用提高了系統(tǒng)信號(hào)梯度線性度,與模擬系統(tǒng)相比,基于數(shù)字邏輯的設(shè)計(jì)溫度性能更穩(wěn)定,更易于小型化,可移植性更強(qiáng)。
0 引言
磁通門(mén)傳感器最早于1935年發(fā)明并投入應(yīng)用,用于靜態(tài)或者低頻變化的弱磁檢測(cè),擁有其他磁敏元件難以媲美的靈敏度和可靠性,在磁場(chǎng)測(cè)量領(lǐng)域一直占據(jù)著不可替代的位置。磁通門(mén)傳感器適用于地磁或人體磁場(chǎng)的檢測(cè),在航空、航天、地質(zhì)勘探、醫(yī)療衛(wèi)生等領(lǐng)域有著廣泛的應(yīng)用。
磁通門(mén)傳感器探頭通常采用類(lèi)似于變壓器的雙鐵芯結(jié)構(gòu),利用軟磁鐵芯變化磁導(dǎo)率的特性將被測(cè)磁場(chǎng)調(diào)制成激勵(lì)信號(hào)的偶次諧波。信號(hào)處理系統(tǒng)對(duì)探頭輸出加以處理,從中提取與被測(cè)磁場(chǎng)大小相關(guān)的信號(hào),轉(zhuǎn)換成直流量并輸出。
傳統(tǒng)的磁通門(mén)信號(hào)處理電路采用模擬元器件,溫度性能?chē)?yán)重地受到影響,且很難小型化,可移植性也很差。與之相比,現(xiàn)代數(shù)字磁通門(mén)系統(tǒng),溫度性能穩(wěn)定,體積小,可移植性強(qiáng)。根據(jù)應(yīng)用的具體情況,可選的實(shí)現(xiàn)方式多樣,有單片機(jī)、可編程數(shù)字邏輯,或數(shù)字信號(hào)處理(DSP)芯片等。
FPGA(Field Programmable Gate Array)是一種高速的可編程邏輯芯片,具有其他設(shè)備難以比擬的靈活性,其大部分引腳的功能、內(nèi)部電路結(jié)構(gòu)完全由用戶根據(jù)需要定義。FPGA器件具有很高的實(shí)用價(jià)值,一方面可以作為專(zhuān)用集成電路的替代品,直接在最終產(chǎn)品中使用,另一方面,也可以在專(zhuān)用集成電路開(kāi)發(fā)流程中,做行為驗(yàn)證工具。
在本文中,描述了一種基于FPGA的磁通門(mén)系統(tǒng)的實(shí)現(xiàn),系統(tǒng)采用閉環(huán)結(jié)構(gòu),對(duì)磁通門(mén)傳感器探頭輸出的數(shù)據(jù)進(jìn)行實(shí)時(shí)處理,提取出反映被測(cè)低頻磁場(chǎng)大小的直流信號(hào)。
1 磁通門(mén)系統(tǒng)結(jié)構(gòu)和工作原理
如圖1所示,整個(gè)系統(tǒng)的硬件包括磁通門(mén)傳感器探頭,DAC,ADC和FPGA。功能上可分為傳感器激勵(lì)源、磁通門(mén)信號(hào)解算、負(fù)反饋回路三個(gè)模塊。
FPGA內(nèi)的正弦激勵(lì)發(fā)生電路和外部DAC一起構(gòu)成傳感器激勵(lì)源模塊。高速ADC和FPGA內(nèi)的A/D接口、相敏整流、低通濾波電路構(gòu)成磁通門(mén)信號(hào)解算模塊。積分放大、D/A接口、高速DAC,以及反饋網(wǎng)絡(luò)共同構(gòu)成了負(fù)反饋模塊。
系統(tǒng)工作時(shí),在激勵(lì)信號(hào)的驅(qū)動(dòng)下,磁通門(mén)探頭的感應(yīng)線圈感應(yīng)環(huán)境磁場(chǎng)大小,產(chǎn)生磁通門(mén)信號(hào),經(jīng)隔直濾波后通過(guò)高速ADC芯片轉(zhuǎn)換成串行數(shù)據(jù)送FPGA的處理。在FPGA中,ADC芯片采集到的串行數(shù)據(jù)先轉(zhuǎn)換成并行數(shù)據(jù),然后通過(guò)相敏整流、低通濾波后得到直流信號(hào)。低通濾波的結(jié)果積分放大后經(jīng)D/A接口轉(zhuǎn)換成串行數(shù)據(jù)送高速DAC芯片轉(zhuǎn)換成模擬信號(hào),經(jīng)反饋電阻反饋到磁通門(mén)探頭的補(bǔ)償線圈(即感應(yīng)線圈),抵消環(huán)境磁場(chǎng)。
由于采用閉環(huán)結(jié)構(gòu),前向通道上積分放大環(huán)節(jié)的增益可視作無(wú)窮大,根據(jù)自動(dòng)控制原理,整個(gè)系統(tǒng)是無(wú)差系統(tǒng),傳感器探頭實(shí)際上工作在“零場(chǎng)”條件下,反饋電流產(chǎn)生的磁場(chǎng)和環(huán)境磁場(chǎng)大小相的方向相反,D/A的前端信號(hào),即積分放大環(huán)節(jié)的輸出反映被測(cè)磁場(chǎng)的大小。整個(gè)系統(tǒng)的信號(hào)梯度主要取決于反饋系數(shù)的大小,具有良好的線性度。
2 磁通門(mén)信號(hào)的特點(diǎn)和處理方法
磁通門(mén)系統(tǒng)的核心是信號(hào)處理電路。
磁通門(mén)傳感器探頭輸出的偶次諧波(以二次為主)是有用的磁通門(mén)信號(hào),而其他頻率的信號(hào)都是有害噪聲。在實(shí)際應(yīng)用中,通常采用“相敏整流-低通濾波”方法處理磁通門(mén)信號(hào)。首先用相敏整流進(jìn)行頻譜的調(diào)整,通過(guò)采用與二次諧波同頻率的方波基準(zhǔn)乘傳感器探頭的輸出,將二次諧波磁通門(mén)信號(hào)轉(zhuǎn)換為直流分量,然后用低通濾波濾除其他頻率分量,得到反映被測(cè)磁場(chǎng)大小的直流量。
低通濾波器輸出是相敏整流結(jié)果的直流分量,與磁通門(mén)傳感器探頭輸出的二次諧波的幅值線性相關(guān),反映被測(cè)磁場(chǎng)大小。
3 硬件電路設(shè)計(jì)
在該設(shè)計(jì)中,F(xiàn)PGA芯片選用Altera公司CYCLONEⅡ系列的EP2C35F626C5,工作速度快,可定義引腳豐富,邏輯單元數(shù)量可觀,性價(jià)比高。FPGA的工作時(shí)鐘為50MHz。
磁通門(mén)激勵(lì)起到驅(qū)動(dòng)傳感器工作的作用,由D/A模塊轉(zhuǎn)換FPGA輸出的正弦數(shù)字信號(hào)產(chǎn)生;本設(shè)計(jì)中,激勵(lì)頻率為3.051kHz,是FPGA工作時(shí)鐘的64×256分頻,速度相對(duì)較低,且精度要求不高,故DAC采用12位并口DA1210芯片。
在閉環(huán)系統(tǒng)的前向通道中,A/D模塊是偏差檢測(cè)環(huán)節(jié),對(duì)傳感器探頭輸出進(jìn)行采樣。該設(shè)計(jì)中,二次諧波一個(gè)周期采樣128個(gè)點(diǎn),即ADC采樣頻率是探頭輸出二次諧波頻率的128倍,也就是781.25kHz。采用AD7980芯片作為A/D轉(zhuǎn)換器,該芯片具有16位精度,轉(zhuǎn)換速度高達(dá)1MSPS,可以滿足要求。
在反饋回路中,D/A模塊作為低頻補(bǔ)償環(huán)節(jié),需要具有較高的精度,而轉(zhuǎn)換速率可以較低;該設(shè)計(jì)采用DA8552芯片,具有16位精度和100KSPS的轉(zhuǎn)換速率。
4 FPGA內(nèi)部電路設(shè)計(jì)
4.1 A/D接口和D/A接口
由于前向通道的ADC芯片、反饋回路的DAC芯片都采用串口通信,因此設(shè)計(jì)了專(zhuān)用的A/D接口和D/A接口,實(shí)現(xiàn)了A/D輸入和D/A輸出的串并/并串轉(zhuǎn)換。
4.2 正弦激勵(lì)發(fā)生
正弦激勵(lì)發(fā)生采用查表的方式實(shí)現(xiàn)。用12×256b的ROM存一幅12位正弦波表,以FPGA時(shí)鐘頻率的1/64,即781.25kHz掃描,產(chǎn)生3.051kHz的12位數(shù)字正弦信號(hào)。
4.3 磁通門(mén)信號(hào)解算和積分放大
磁通門(mén)信號(hào)的解算是FPGA內(nèi)數(shù)字邏輯最核心的功能,由相敏整流器、基準(zhǔn)發(fā)生器和FIR數(shù)字濾波器三部分共同實(shí)現(xiàn),如圖2所示。
相敏整流器由數(shù)據(jù)轉(zhuǎn)換器和數(shù)據(jù)選擇器構(gòu)成。數(shù)據(jù)轉(zhuǎn)換器.Mdfr將輸入u(n)轉(zhuǎn)換成補(bǔ)碼形式。輸出v(n)是輸入u(n)或者其補(bǔ)碼,由基準(zhǔn)h(n)當(dāng)前的值決定。實(shí)際上,電路的功能等價(jià)于將u(n)和在1和-1間交替變化的數(shù)列相乘,也就是說(shuō),v(n)是u(n)以h(n)為基準(zhǔn)相敏整流的結(jié)果。
基準(zhǔn)發(fā)生器Nrm為相敏整流器提供基準(zhǔn)h(n)。對(duì)50MHz時(shí)鐘進(jìn)行分頻,產(chǎn)生與二次諧波磁通門(mén)信號(hào)同頻率,即6.103MHz的方波,通過(guò)控制信號(hào)Ctlr調(diào)整相位,使基準(zhǔn)的相位和二次諧波磁通門(mén)信號(hào)的相位對(duì)其相敏整流的效率最大化。
低通濾波器Sinc_Fltr是N點(diǎn)sine濾波器的FIR形式,傳輸函數(shù)是:
信號(hào)流圖如圖3所示。
由于二次諧波磁通門(mén)信號(hào)一個(gè)周期采樣128點(diǎn),因此N=128;按照?qǐng)D3所示的信號(hào)流圖,128點(diǎn)sinc濾波器由127個(gè)加法器和128個(gè)寄存器組成。為防止溢出,加法器和寄存器寬度為16+log28=24位,最后一級(jí)輸出的高16位作為濾波器的輸出。實(shí)現(xiàn)了低通濾波的功能。
積分放大由積分器Intgtr實(shí)現(xiàn),結(jié)構(gòu)如圖4所示。為防止溢出,采用32位的加法器和寄存器。加法器的一個(gè)輸入端是低通濾波器的輸出,另一個(gè)是累加和。在閉環(huán)系統(tǒng)中,積分器輸出的低16位是反映被測(cè)磁場(chǎng)大小的數(shù)字量。
5 實(shí)驗(yàn)和結(jié)果
使用雙鐵芯結(jié)構(gòu)磁通門(mén)探頭感應(yīng)被測(cè)磁場(chǎng),磁場(chǎng)強(qiáng)度從0μT變化到25μT。首先去掉積分模塊打開(kāi)反饋回路,對(duì)開(kāi)環(huán)結(jié)構(gòu)的前向通道進(jìn)行測(cè)試,然后加入積分模塊和閉合反饋回路,對(duì)閉環(huán)系統(tǒng)進(jìn)行測(cè)試。兩次實(shí)驗(yàn)的輸入/輸出關(guān)系如圖5所示,圖中“o”是開(kāi)環(huán)結(jié)構(gòu)的結(jié)果,“+”是閉環(huán)結(jié)構(gòu)的結(jié)果。
兩次試驗(yàn)的數(shù)據(jù)如表1所示。
當(dāng)系統(tǒng)開(kāi)環(huán)時(shí),隨著被測(cè)磁場(chǎng)的增大,系統(tǒng)輸出單調(diào)增高,可以反映被測(cè)磁場(chǎng)的大小。輸出的非線性度為4.01%,最大誤差為0.867μT,受磁通門(mén)探頭鐵芯的非線性影響很大。閉環(huán)后,系統(tǒng)非線性度和誤差性能得到明顯改善,非線性度為0.012%,最大誤差為3nT。
6 結(jié)語(yǔ)
本文中描述的基于FPGA的磁通門(mén)傳感器系統(tǒng)采用閉環(huán)結(jié)構(gòu),提高了系統(tǒng)輸出梯度線性度。FPGA內(nèi)的數(shù)字邏輯實(shí)現(xiàn)了包括磁通門(mén)信號(hào)解算在內(nèi)的多種功能。實(shí)驗(yàn)驗(yàn)證了系統(tǒng)功能的正確性。由于數(shù)字邏輯的特點(diǎn),和模擬系統(tǒng)相比,基于FPGA的設(shè)計(jì)有著優(yōu)秀的溫度穩(wěn)定性,可移植性,且易于小型化。本文中的設(shè)計(jì)可直接應(yīng)用在最終產(chǎn)品中,也可以作為專(zhuān)用集成電路的行為驗(yàn)證,以此為基礎(chǔ)繼續(xù)開(kāi)發(fā)集成電路芯片。